Exercise 30

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
x^{2 / 3}+y^{2 / 3}=4, \quad(-3 \sqrt{3}, 1), \quad(\text { astroid })
$$

Solution

The aim is to evaluate y^{\prime} at $x=-3 \sqrt{3}$ and $y=1$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2 / 3}+y^{2 / 3}\right)=\frac{d}{d x}(4) \\
\frac{d}{d x}\left(x^{2 / 3}\right)+\frac{d}{d x}\left(y^{2 / 3}\right)=0 \\
\left(\frac{2}{3} x^{-1 / 3}\right)+\left[\frac{2}{3} y^{-1 / 3} \cdot \frac{d}{d x}(y)\right]=0 \\
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0 \\
x^{-1 / 3}+y^{-1 / 3} y^{\prime}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=-\sqrt[3]{\frac{y}{x}}
$$

Evaluate y^{\prime} at $x=-3 \sqrt{3}$ and $y=1$.

$$
y^{\prime}(-3 \sqrt{3}, 1)=-\sqrt[3]{\frac{1}{-3 \sqrt{3}}}=\frac{1}{\sqrt{3}}
$$

Therefore, the equation of the tangent line to the curve represented by $x^{2 / 3}+y^{2 / 3}=4$ at $(-3 \sqrt{3}, 1)$ is

$$
y-1=\frac{1}{\sqrt{3}}(x+3 \sqrt{3}) .
$$

Below is a graph of the curve and the tangent line at $(-3 \sqrt{3}, 1)$.

